
Variational average atom in quantum plasmas (VAAQP)—first numerical results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 214059

(http://iopscience.iop.org/1751-8121/42/21/214059)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/21
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 214059 (9pp) doi:10.1088/1751-8113/42/21/214059

Variational average atom in quantum plasmas
(VAAQP)—first numerical results

R Piron1, T Blenski1 and B Cichocki2

1 CEA, IRAMIS, Service des Photons Atomes et Molécules, F-91191 Gif-sur-Yvette, France
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Abstract
A new code called VAAQP (variational average atom in quantum plasmas) is
briefly described and its first results in the case of aluminium at solid density and
temperatures between 0.05 and 12 eV are reported. The code is based on a new
fully variational approach to plasmas at local equilibrium with both bound and
free electrons treated quantum mechanically. This model which is derived from
two first terms of the cluster expansion appears to be the quantum extension
of the well-known atom-in-cell model based on the Thomas–Fermi theory
(Thomas–Fermi average atom) that has been proposed in 1949 by Feynman,
Metropolis and Teller. Similar to the case of Feynman et al’s model the VAAQP
approach, due to its fully variational character, respects the virial theorem and
uses a simple formula for the electronic pressure. Comparisons to results
obtained using other approaches are also shown and discussed in the aluminium
case. The results confirm the feasibility of the quantum variational model in
the warm dense matter regime. Effects of the variational treatment can lead in
this regime to significant differences with respect to existing non-variational
models.

PACS numbers: 52.25.Kn, 52.25.Jm, 52.27.Gr

1. Introduction

We present here a code called VAAQP which is a numerical application of a new
fully variational plasma model with all quantum electrons. Models of plasmas at local
thermodynamic equilibrium with quantum bound and free electrons are necessary in order
to calculate the photo-absorption cross sections and the equation of state in the modelling
of inertial fusion devices, in astrophysics, in laboratory plasma studies and in warm dense
matter experiments. Up to now the existing average-atom models in which all electrons
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are treated as quantum [1–3] have not been fully variational in the sense that they were not
respecting the virial theorem. Recently, a fully variational model with all quantum electrons
respecting the virial theorem has been proposed [4, 5]. This variational model is in our
opinion a first relatively simple and coherent model of plasma matter with quantum electrons.
Atomic structure calculations and electronic pressure obtained from this model are in principle
thermodynamically coherent. The structure elements can be used further to calculate plasma
radiative and transport properties consistent with the equation of state.

One may expect our model to work well in the case of strongly coupled plasmas in which
the ion–ion correlation function has roughly the form of a cavity (as it will be explicitly stated
in section 2). We focus our attention here on the electronic structure. This model may be
supplemented by different approximations to ion free energy and pressure contributions.

Among the most interesting applications of plasma models are cases corresponding to the
warm dense matter (WDM) regime. Special attention is thus paid to matter at high density
(i.e. solid density) and relatively low temperature (around a few eV or below). However this
regime is also the most difficult to account for in the VAAQP code. The main reason for
this difficulty is the presence of the long-range Friedel oscillations. For this reason in this
preliminary study we focus our attention on a WDM case for aluminium.

This paper is organized as follows. Section 2 contains a short review of the model.
Section 3 is devoted to a brief description of the VAAQP code. Some results obtained with the
code for aluminium (Al) in the WDM regime are presented in section. 4. Differences between
models requiring the neutrality of the Wigner-Seitz (WS) sphere (like in the INFERNO model
[1, 3]) and the variational model are discussed in this section. We recall that the WS sphere
radius RWS is simply related to the ion density ni by the formula: RWS = (3/(4πni))

1/3.
Comparisons with experiments and state-of-the-art simulations are presented in section 5.

2. Variational theory of the average atom in jellium

The VAAQP code uses a new model [4, 5] of plasma at thermodynamical equilibrium with
bound and continuum electrons treated within the same formalism. In this model, the plasma
equilibrium is determined by three parameters: atomic number Z, temperature T and ion
density ni . All other quantities, including mean ionization Z∗, can be determined from
variational equations using for instance the density functional theory (DFT). As shown in
[4, 5] in the Thomas–Fermi (TF) approximation to the electron density the present model
leads naturally to the TF ion-in-cell approach proposed in 1949 by Feynman et al [6].

The starting point of the present model is the cluster expansion [7–9] of the free energy
per unit volume from which the two first orders are retained:

f (ni, Z, T ) = f0 + 〈f 〉1 + · · · , (1)

where f0 is the free energy per unit volume of a uniform electron gas with an unknown density
n0,

n0 = niZ
∗ (2)

In the zeroth order, electron charge density is neutralized by a uniform ion background. 〈f 〉1

is the average contribution to the free energy density of one ion immersed in that jellium. In
the first order the system is no more homogeneous. The cluster expansion in the first order
leads to

〈f 〉1 = ni

∫
d3r

{
f

ion+jellium
1 (X; ni, Z, T ; �r) − f0(n0, T )

}
. (3)

The subtraction of the zeroth-order term assures the convergence of the above integral. In
what follows all structure variables, including n0, will be denoted by X.
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The free energies per ion are thus defined as follows:

F(X; ni, Z, T ) = F0 + �F1 = f0(n0, T )

ni

+
〈f 〉1

ni

. (4)

All structure variables X are determined from the minimization of the free energy
F(X; ni, Z, T ) with additional conditions:

• In the first order, we assume that the non-central ions are absent inside a cavity with a
radius R

n0θ(r − R). (5)

• The neutrality of all charges, including the cavity, leads to the equation

Z +
∫

d3r{n(�r) − n0θ(r − R)} = 0. (6)

• The total electron number per unit volume has the following cluster expansion:

Zni = n0 + ni

∫
d3r{n(�r) − n0} + · · · . (7)

Substituting equation (7) into equation (6) leads to the identity: R = RWS

The minimization leads to self-consistent-field (SCF) equations similar to those obtained
in [1–3] plus a new one which allows us to determine n0 or Z∗:∫

d3r{Vel(�r)θ(r − R)} = 0, (8)

where Vel(r) is the electrostatic part of the SCF potential [4, 5].
It is interesting to note that equation (8) means that in the model, the electronic SCF

potential does not interact with the non-central ions charge distribution. There is a possibility
to extend this model to other non-central ions charge distributions. This subject will not be
considered in the present paper.

The main difference between INFERNO-type models [1, 3] and the present one is the
determination of the mean ionization Z∗. In the INFERNO type models, the mean ionization is
obtained from the neutrality of the WS sphere whereas in the present one it is obtained from
the variational principle (8). In the present model, the WS sphere is in general non-neutral.

3. The VAAQP code

The VAAQP code finds the solution to the variational equations described above (see
equations (1)–(8)). First, a family of solutions to the SCF equations in the four-parameter
space (Z, T , ni, Z

∗) is calculated. Among them is found such that fulfils equation (8) (see
figure 1). The code has three options to calculate the electron density: semiclassical (TF),
quantum-non-relativistic (Schrödinger) or quantum-relativistic (Dirac) formalism.

In the case of calculations using quantum density models, continuum state contributions to
observables are integrated over energy using a resonance-catching adaptative-mesh-refinement
method. The SCF solutions in the four-parameter space (Z, T , ni, Z

∗) are obtained by iteration
using the method described in [10]. The electron density and total potential are calculated
using finite difference numerical methods inside the region extending from the radius equal to
zero up to an asymptotic radius. At this radius the electron density is matched to its asymptotic
form which is calculated using the linear response theory of a homogeneous dense plasma
[11, 12]. Solutions are considered valid if they are insensitive to the choice of the matching
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Figure 1. Left-hand term of equation (8) versus Z∗. Example of solution in the case of Al plasma
at 5 eV temperature and 2.7 g cm−3 matter density. Each point on the figure corresponds to a SCF
solution in the four-parameter space (Z, T , ni , Z

∗).
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Figure 2. Plot of the electron density versus radius for Al at 0.25 eV temperature and 2.7 g cm−3

matter density with an enlarged view of the Friedel oscillations.

radius and are not mesh dependent. The matching radius depends mostly on the range of the
Friedel oscillations and becomes larger as temperature is lower (see figure 2).

Instead of looking for solution to equation (8), the code has other options allowing one to
fulfil other conditions as for instance the neutrality of the WS sphere.

4. Model comparison in the case of the warm dense aluminium

The code has been applied in the case of Al at typical condition of WDM, i.e. solid density
(2.7 g cm−3) and temperatures between 0.05 and 12 eV. In this regime, Friedel oscillations
decay on a scale much larger than the WS radius (decay length

(
2.bF

0

)−1 = 55.2 a0 at 0.05 eV

temperature, WS radius RWS = 2.99 a0; bF
0 = μ1/2(−1 +

√
1 + (πT /μ)2)1/2 is the imaginary

part of the zeroth-order pole of the Fermi–Dirac function). In such cases, the region of
numerical calculations should extend over several tens of RWS. It is important to recall that
the present approach is based on the assumption that the SCF potential decays exponentially
due to screening and decay of the Friedel oscillations which is only valid at finite temperatures
[11, 12].

The exchange-correlation term is taken in the local density approximation (LDA). For this
exploratory study, in order to have direct comparisons with the Thomas–Fermi–Dirac (TFD)
model, Dirac exchange term [13, 14] was used. Iyetomi and Ichimaru finite-temperature
exchange-correlation term [15] has also been tested. In the temperature regime of interest in
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Figure 3. Mean ionization Z∗ as defined in equation (2) versus temperature in the case of Al
at 2.7 g cm−3 matter density. Solid line corresponds to the variational model with TF density.
Plus symbols denote the neutral WS sphere model with TF density. Squares correspond to the
variational model with non-relativistic quantum density. Circles denote the neutral WS sphere
model with non-relativistic quantum density.

this study, the differences between results obtained using these two approximations appeared
to be relatively small.

Figure 3 displays the behaviour of the mean ionization Z∗ that was defined in
equation (2). This definition is the only one justified in the framework of the TF and quantum
cases [5] and can be also applied to any model as it corresponds to the asymptotic value n0

of the electron density, which is related to the chemical potential. Other definitions related to
the total electron density are sometimes used. One of those is the value of the electron density
at the WS radius. This definition is motivated by the fact that it is identical to the one related
to n0 in the TF case. Another possible definition could be the difference between the atomic
number Z and the sum of the bound levels occupation numbers. However, definitions of the
number of bound (or free) electrons per atom relying on the summation of the occupations of
bound (or localized free) states encounter well-known difficulties due to the fact that they are
not related to any well-defined quantum operator. Definitions other than equation (2) will not
be considered in this paper.

Results of four approaches are presented in figure 3. The first one is the result of the
variational model with calculated non-relativistic quantum density. The second one is the
result of the model with electron density calculated using the non-relativistic quantum density
but in which equation (8) is replaced by the condition of the neutrality of the WS sphere (we
call this approach NWS after ‘neutral WS sphere’):

Z =
∫

|�r|�RWS

d3rn(�r) (9)

The condition based on equation (9) is used in the INFERNO model. However, calculations
reported here with equation (9) do not correspond exactly to the original INFERNO model as
in our case the potential outside the WS sphere is not equal to zero which is the case in that
model. Two calculations using the TF formalism are also reported, one with equation (8),

5



J. Phys. A: Math. Theor. 42 (2009) 214059 R Piron et al

another with equation (9). According to [4, 5], in the TF case, these two approaches are strictly
equivalent which is confirmed by figures 3 and 4.

As it can be observed in figure 3, results from quantum calculations with equation (8)
can differ significantly from those obtained by using equation (9). Differences are especially
pronounced at low temperature and tend to vanish as the temperature increases. It appears also
that in the case of Al at solid density and at temperature below 2.5 eV, the atomic structure is
different in the two quantum models. The 3s shell is found to exist within the variational model
whereas it is absent when using the NWS model. These differences are mainly related to the
quantum behaviour of the density outside the WS sphere, namely to the Friedel oscillations
which are present in this regime.

Electronic pressure is calculated from the formula

P = −f0 + n0(μ + Vxc(n0) + Vel(RWS)). (10)

f0 = f 0
0 +f xc

0 is the free energy per unit volume of a uniform electron gas including exchange
correlation. f 0

0 is the ideal gas free energy for the grand-canonical ensemble, namely in atomic
units

f 0
0 = −2

3

√
2

π2
T 5/2I3/2

(
μ

T

)
+ n0μ. (11)

In the present study f xc
0 was set to εxc from [14]. Vxc is the exchange-correlation part of the

SCF potential [4, 5]

Vxc(n) = ∂f xc
0 (n)

∂n
= −

(
3n

π

)1/3

. (12)

Equation (10) is obtained from the variational theory and applies only to the case where
equation (8) is fulfilled. The quantum NWS model is not variational and the use of the above
pressure formula is only given for comparison purposes. In the case of models that are not
fully variational the electronic pressure is often calculated by numerical differentiation of the
free energy with respect to the ion density.

As can be seen in figure 4, relative differences in calculated pressures from the two
quantum models can be about 40% in the low temperature region and decrease as temperature
increases. Pressures obtained using the quantum NWS model at low temperatures seem to be
relatively close to those obtained from the TFD model.

Figures 3 and 4 both display curves that are continuous with respect to temperature. In
the case of the quantum variational model, it is worth stressing that continuity is preserved
despite the fact that the 3s shell is disappearing between 2 and 2.5 eV. This is due to a careful
treatment of continuum resonance in the VAAQP code.

5. Comparison with experiments and simulations

VAAQP provides only electronic contribution to the pressure. In order to compare our results
to experiments and simulations in the regime of interest in this paper, we need to add an ion
contribution to the pressure. We have chosen to use the simple formula given in [16, 17] which
is based on Hansen’s one-component plasma (OCP) simulations. Here, this contribution is
of the order of about 20% or less. Following Mazevet and Zerah, we have calculated several
mass density–temperature points corresponding to the SESAME 3700 principal Hugoniot
curve (see [18] and references therein). In figure 5 are displayed results from those variational
quantum calculations as well as available experimental data from [19–42]. Mazevet and Zerah
simulation results are also shown for comparison.
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Figure 4. Electronic pressure P versus temperature in the case of Al at 2.7 g cm−3 matter density.
Solid line corresponds to the variational model with TF density. Plus symbols denote the neutral WS
sphere model with TF density. Squares correspond to the variational model with non-relativistic
quantum density. Circles denote the neutral WS sphere model with non-relativistic quantum
density.
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Figure 5. Comparison along the principal Hugoniot of Al between VAAQP variational quantum
calculations, ab initio simulations from [18] and experiments from [19–42]. Total pressure
P versus mass density ρ is presented.

This first comparison indicates that the pressure results compare rather well with
experiments and state-of-the-art ab initio simulations in this region which is especially difficult
from the numerical point of view in our case.

6. Conclusion

In this paper, a fully variational model of the average atom in quantum plasmas is applied for
the first time in a numerical code called VAAQP. It is shown on some chosen examples that
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the code is able to calculate variational self-consistent equilibrium at high matter density and
relatively low temperatures. In this regime, Friedel oscillations of the electron density and
SCF potential present a real challenge from the numerical point of view.

Effects of the variational treatment are studied by comparison to results from a model
requiring the neutrality of the WS sphere. The variational model can lead to electronic
pressures, mean ionizations and atomic structures that differ significantly from those obtained
using existing models especially in the low temperature region.

Comparisons with experiments and ab initio simulations are also shown. Let us recall
however that the main objectives of this work is to open the way to atomic physics and radiative
properties calculations which could be coherent with the variational equation of state and the
virial theorem. Such calculations can be based on methods similar to that used in the VAAQP
code.

The work on the present model is in progress. Among objectives is the application of the
method presented in this paper to the superconfigurations as indicated in [5].
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